If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15000x^2+300x=0
a = 15000; b = 300; c = 0;
Δ = b2-4ac
Δ = 3002-4·15000·0
Δ = 90000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{90000}=300$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(300)-300}{2*15000}=\frac{-600}{30000} =-1/50 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(300)+300}{2*15000}=\frac{0}{30000} =0 $
| 16d-(4-5d)=6-67 | | -175=7(5n+5) | | 12–3*(x–4)+11*(x+2)=102 | | 12–3*(x–4)+11∙(x+2)=102 | | 25s-35-14s=8+30s | | 3(3+4x)+6x=-99 | | 16x+6-3x=-22 | | 8y-20=8+2y | | 10n=3n+28 | | 48=2x+4(20-x) | | 3.3x+22=-11-7.1x | | 5n*n-3n-296=0 | | 3=a(2)²+1(2) | | 1/3(3z—12)=16 | | a2-a-42=0 | | b2-16b-57=0 | | 4x−3=14 | | (K^3)-(5k^2)+(16k)-(12)=0 | | K^3-5k^2+16k-12=0 | | -5*(x+2)+1=4x | | 2x+3/12=1/3 | | 4(w-6)=28 | | 8x+11=6x+9 | | 1x+20=x+20 | | (2)/(3)(6x+30)=x+5(x+4)-2x | | 2x-5=5x+17 | | 0,4+x=288 | | 0.6+x=288 | | 125=500+25x | | 0,6+x=168 | | 7·(–4x–5)–8x=9·(–3x+8)–98 | | X^2+7y+10=0 |